Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We present a new scientific document similarity model based on matching fine-grained aspects of texts. To train our model, we exploit a naturally-occurring source of supervision: sentences in the full-text of papers that cite multiple papers together (co-citations). Such co-citations not only reflect close paper relatedness, but also provide textual descriptions of how the co-cited papers are related. This novel form of textual supervision is used for learning to match aspects across papers. We develop multi-vector representations where vectors correspond to sentence-level aspects of documents, and present two methods for aspect matching: (1) A fast method that only matches single aspects, and (2) a method that makes sparse multiple matches with an Optimal Transport mechanism that computes an Earth Mover’s Distance between aspects. Our approach improves performance on document similarity tasks in four datasets. Further, our fast single-match method achieves competitive results, paving the way for applying fine-grained similarity to large scientific corpora.more » « less
- 
            null (Ed.)The COVID-19 pandemic has sparked un- precedented mobilization of scientists, gener- ating a deluge of papers that makes it hard for researchers to keep track and explore new directions. Search engines are designed for targeted queries, not for discovery of con- nections across a corpus. In this paper, we present SciSight, a system for exploratory search of COVID-19 research integrating two key capabilities: first, exploring associations between biomedical facets automatically ex- tracted from papers (e.g., genes, drugs, dis- eases, patient outcomes); second, combining textual and network information to search and visualize groups of researchers and their ties. SciSight1 has so far served over 15K users with over 42K page views and 13% returnsmore » « less
- 
            Analogy—the ability to find and apply deep structural patterns across domains—has been fundamental to human innovation in science and technology. Today there is a growing opportunity to accelerate innovation by moving analogy out of a single person’s mind and distributing it across many information processors, both human and machine. Doing so has the potential to overcome cognitive fixation, scale to large idea repositories, and support complex problems with multiple constraints. Here we lay out a perspective on the future of scalable analogical innovation and first steps using crowds and artificial intelligence (AI) to augment creativity that quantitatively demonstrate the promise of the approach, as well as core challenges critical to realizing this vision.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available